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A two-dimensional problem for the Navier-Stokes equation is considered and the stream 

function is assumed to be periodic in x , g and ti , the periods being Zll& , 2rT 
and y respectively. 

A steady state solution Q(y) = - (y/v ) cos y was investigated in IJ J where it was 

shown that the solution is stable when a, > 1 and unstable when r~ e c 1 and v is 

sufficiently small, Below we investigate the stability of a periodic solution 

‘pO (y, t) = - + cos y (a + e sin ot) (T=$) 

which differs little from the steady state solution (6 is a sufficiently small positive 
number). Also , sinW -L can be replaced by any function 6 ( 6) periodic and of period 

y and such, that T 
I* 

I g (t) d.! = 0 

0 
At the beginning of p J it was remarked that the periodic solution $, (y , 6) is uncon- 

ditionally stable when Cx > 1 . 
in p] for the steady solu~o~ 

Proof of the above statement is analogous to that found 

The main result of this work consists of the proof that when CQ, < 1 , h = y / v2 is 
sufficiently large and c is sufficiently small, then the solution q. (jj, I? ) is unstable 

with respect to infinitesimal perturbations . 
When investigating the spectrum of stability, we have found that simple eigenvalues 

were obtained in the range $ siXc c 1 . Solution of the stated problem was performed 

in the following manner : stability problem was reduced in Section 1 to solving the 
spectral problem ; solution of the latter made use of the simplicity of the eigenvalue 
of the steady state problem (Section 2) : spectrum of the steady state problem was inves- 
tigated in Section 3 and in Section 3, theoretical basis was given for the method of 
solution. 

1. We shall seek the solution of the Navier-Stokes equation for the stream function 

aA@ 
at + 4@9, -II@&; - vAz$ = +r cos Y f Ef (Y, t) (i_ij 

periodic in X, 9 and 8 and with periods 2n/Q , ‘2n and 2’ respectively . We shall 
restrict the arbitrani constant appearing in the definition of the stream function thus 
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Periodic solution of the Navier-Stokes equation 131 

and in the following we shall assume that all functions are periodic in x and y and 
that their periods are 27l/Q and 27-r. Moreover, we shall assume f( E/. t) tp be 

periodic in time with the period T and to satisfy 
T 

s 
f (Y. 0 f& =O 

0 
Let f(& fi) be of the form 

i(Y,t)=rcosy sinot + +-cc& 

Then (1.1) has the following solution 

1C70(y,t)= - -$-c*sy(i +esinwt) 

Let us examine its stability. If we put, in (1. I), $ (x, Y, t) = g0 (y, t) -I- Cg (r, Y, t). 

then @(X , g, 6 ) satisfies 

+?A@ 
~+~rtA~~-~~A~P.~+~sinY(~+~~in~t)fAQ)r~Qtz)-vAa~=O (1*3) 

We should note that if CC, 2 1 , then the periodic solution is unconditionally stable 

(i. e. stable under any perturbations (P (X, E/, z?) and for any values of parameters V, 

y and c). Proof of this follows the lines of the proof in lJ2] for the steady state solution, 
Next we shall solve the linearized problem 

aA@ 
at+ ~sinyfZ-i_~sinwt)(AQt,+~~)-vAzQf=O (1.4 

In analogy with the Folke’s method used in ordinary differential equations, we shall 
seek the solution of (1.4) in the form 

@ (2, Y, 4 = “% (z, Y? 4 

where Cp(X f y, $) is periodic in $, with period r= 2TTlcU. Solution $ o(@. 6) will 
be unstable if at least one eigenvalue is found, which has a positive real part. Thus, 

the problem in stability is reduced to the spectral problem 

&p~z+clA~$ +~sinY(1+esinot)(Arp,+~,)-vAz9,=0 (1.5) 

2 l We shall now construct the solution of the spectral problem. Let us introduce a 
Hilbert space !i 2 as the closureof the set of smooth periadic functions satisfying the 
conditions 

U(--2, -Y) = U(% Y), 
1 

u (2, y) dx dy = 0 

P 

on the norm, generated by the scalar product 

By Hz’ we shall denote the Hilbert space of functions of X, &I and 6 belonging to 
Hz at almost all 6 and periodic in t with period r. Scalar product in Ha’ is given 

bY 
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and by iIza (where a is any positive number) we shall denote the subspace of Hz’ 

consisting of functions of the type 

Pg (y, t) + e-i=g* (y, 1) 

Here function g ( y , 6 ) is periodic in y with the period equal to ‘Lrr. Space flz’ 

decomposes into a simple sum of subspaces Hf”” (k = 1, 2, , . .). Each of these subspa’ces 

is invariant with respect to the operater A , hence the investigation of the spectrum of 

(1, 5) reduces to its investigation in the spaces HzZ(~ = ka,, k = 1,2,. ..). 
We shall show, how, beginning with the eigenvalue 0, and the corresponding eigen- 

function (~0 (2, y)EH,=, and assuming that 0, is simple, we can find the eigenvalues 

and eigenfunctions of (1.5) . We shall seek the unknowns CJ and 9, (5, y, t)~H~a in the 

form of series in 6 
B= i Qkek, Cp (5, Y, t) = g qkek (2.1) 

k=O k=o 

convergence of which will be proved in Section 4. Inserting (2.1) into (1, 5) and equa- 

ting the coefficients of like powers of 6 , we obtain a set of equations defining Ok 

and q, . We shall show, how they can be successively determined. 

which corresponds to the stationary case and was discussed in [l], gives U. and To . 
Unknowns CJl and cpl are found from Equation 

= - +Acp, - -$ sin y sin ot k (Ag-0 .f 90) (2.3) 

We shall seek the function Cp1 (x , y , 8) in the form 

(PI (r, y, t) = u1 (x, y) + fJwt u1 (z, Y) + e-lof VI* (x’, ?/I 

Then U1 will be given by 

L~L~ - aoAul + 
a _?? siny - (Alcl + ~1~) - vAz~cI ;= - z,A(c,, 

I\ 

8X 
(3.3) 

V 

which has a solution, provided that the necessary condition of orthogonality 

s 
(- U’lA~O) todx dy = 0 

II 

is fulfilled. Here To is a solution of a conjugate equation 

L*TCJ E GUATO - 2. (I -1 A) _cfc_ ((o .Gn 111) - vA?(F --7 0 
T 

Since the eigenvalue 0, is simple, we have 

* 
\ 

Apro-c,, d.r thy + 0 

.?2 

Then C71 F 0 , while U~(X, y) can be found from the equation defining qo(x, y). 

Function Ul(X , pi) is given by 
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(GO +- io) Avl + -$ sin y .& (A~, + rl) - vA%~ = - &- $- siny $ (ATO + 90) (2.5) 

Authors of [l] have shown that the eigenvalue U is real when ReUZ 0 , consequently 

Uo + iw is not an eigenvalue and (2.5) has a solution, Function Ul(X. JJ) should be 
sought in form of a Fourier series 

30 

v1 (2, y) = eiaz 2 a,ein~ + e-iar 5 (-l)fianein21 (K., = (-1 )“a,) 
n=--03 Tt=-CO 

Then we have, for U,, an infinite nonhomogeneous system of the type 

~,a, + a,_1 - an+l = b, (n=0, fl, . ..I. 

which can be solved approximately, After that, we find CJa and Cp2 from 

a&% at + Lcp, = - G?A~,-, - % sin Y sin ot -& (A'pl + cpl) 

We seek Cp2 in the form 

92 (I, y, 4 = u2 (2, Y) + eiwt v2 (5, Y) + eeiwt $* (2, Y) 

function U 2(X , y 3 is given by 

LUZ E - cs&p~ + % sin Y Im L (As + ZJL) 1 
and the necessary condition for its solution to exist. is 

- QAQ, + $- sin y Im 

hd 
[& (ADI+ vl)]}~dxdY= 0 

This yields U, which, in general, is not zero. Remaining unknowns U k and Cpk 

can be found in a similar manner, and all equations encountered are already famiIiar. 

3, Let us now examine the spectrum of the steady state problem, first noting that if 
the eigenvalue U, - ’ 0 of the problem (2.2) is simple over the class of steady state 
solutions, then it will be simple over the class of periodic solutions. Indeed, let us seek 
a solution of (2.2) periodic in $ with period y, in form of a Fourier series 

‘PO (r, Y, t) = ; uk (z, Y) eurcoc 

k=O 

Functions 7.4 ,J X , El) satisfy 

(~0 + i/co) AZL~ + 2 siny & (Au,,. _I- oh) - vA?uk = 0 (k = O,j, . , .) 
V 

Rut it was shown in [lj that U0 - > 0 can be an eigenvalue of this problem only when 
k = 0 , Therefore, the absence of associated vectors in the class of periodic solutions 
follows from their absence from the class of steady state solutions. 

1, We shall now show that the positive eigenvalue U. is unique and simple in every 
subspace HZa(O <a < 1) 

We shall seek the eigenfunctions (Pi (2, Y)EH,I of the equation L rp, = 0 , in the 

form Do m 

where :he coefficients Cr. satisfy the condition c_, = (-1)“~~. 

Then, as shown in [l], the eigenvalue Do can be found from 
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a0 1 -- -- 1 
2 01 +- 

= f (IL, A, a) 
a2 + . . . 

(3.2) 

in which the following notation is used: 

p=$, Ad, a, _ F (a” + n2) (a2 -t n* + P) 
lb a(a2-1 + fl*) 

(n = 0, 1, . . .) 

We easily see that if CZ 2 0 , then (3.2) has neither positive, nor zero roots, 

Lemma 3.1. Function xf( /J , i , CL ) increases monotonely in h . 
Proof . We have 

kf (p, h, a) s 1 1 
h-1Q1 + haflf **. 

When x increases, odd terms of the above continued fraction decrease, while the 

even terms remain unchanged, which proves the lemma. 

Lemma 3. 2 , Function Uo-l,?(II, k .CL) increases monotonely in ll( 1-L > 0). 

Proof . We have 

ao-lf (p, X, a) z -!- 1 
acal + - 

Odd terms are of the form 
Ua-lQe + . . . 

4 
aOan = - 

h2 
(aa + cL) [(aa + fi2j2 + p (a2 + n2)1 < 0 

(a2-i)(a2-l++n2) 
(n=i,3,...) 

Obviously, they decrease with increasing p ( p > 0) . Even terms are of the form 

ao-la, = 
(a2 + n2) (a2 + n2 +iL) (ua - 1) 

a* (a2 - i+ ma’ + P) 
(n = 2, 4,. . .) 

We easily see that the derivative a (a0 -1~~) / ap > 0.. hence the continued fraction 

increases in /l > 0 . 
Lemma 3.3. If 0 < Ct c 1 and x 2 1, where id is a solution of (3.2) when 

p = 0 , then Equation (3.2) has a single root U 2 0 . 
Proof . (a) . If /J -+ 03, then - +a, --) + m. The estimate 

+= -k(s2+1)(~+1+ p) 

holds for the function f( CL , k , Cl ) and, as p -) + Co , we have 

--l/a% > f (IL, A7 a) (3.3) 

b) . We shall show that for small I_L the opposite inequality holds. In [2] the exist- 

ence was proved of such h = A,, , for which p = 0 was a root of (3.2), i. e. 

&z = bf(O, ho, a) 

Function if( CL, k , a) increases monotonously in k (Lemma 3,1), therefore at A 2 )co 

and small values CI 2 0, we have _ _% z < f (VV a, a) (3.4) 

Comparing the estimates (3.3) and (3.4) we can deduce the existence of a root l-l> 0 
of (3.2). and its uniqueness for a fixed CX follows from Lemma 3.2. 

In order to establish definitely the simplicity of the elgenvalue in the space Hz, we 
must prove the absence of associated vectors which, in turn, requires that Equation 
.&cp = -Aqa has no solution. It can have a solution only if the condition 

055-- 

s, 

A’posO dx dy = 0 

where To is the solution of the conjugate equation, holds. We shall show now, that 
8 > 0 . Eigenfunctions cpo (X , y ) have the form (3. l), while those of the conjugate 
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equation 70 (X , p) , have the form 

z. (2, y) = eCar 
m 

z 
dneinP + e-iax i (___i)ndneinv, d_, = (--l)n d, 

n=-m n=--aJ 

It can be confirmed directly that the coefficients en and d, are connected by the 

relation d, = (-l)“-l (CC + na - 1) c,. In this case we obtain 

I3 = 2 1 Q 1 ; (-I)+1 (a2 + n2) (a2 + n.2 - 1) cn* (3.5) 
7X=--03 

We shall establish another equation to show that 6 > 0 . Multiplying (2.2) by the 

function Acp, t cpo and integrating over fl , we obtain 

i (a2 + TG)~ (~9 f n2 - 1) c,2 + p 5 (a2 + n2) (aa + n2 - 1) Cf = 0 (3.6) 

?a==---03 
which, multiplied by ( a2 t l-r )‘I and addeTz(3.5), yields 

6=2lQJ 2 (a2+n2) (u2 +n2-1) 

n#o iI (-l)n-l+l + &]cnz>O 
I 

2, If 4 5 CX o c 1 , then j-l (a, ) is a unique simple eigenvalue in fin’ . 
Indeed, the eigenvalue 1-L (Ct o ) is simple in the space N, a~, while other spaces 

~~‘~0 (k > 2) contain no eigenfunctions corresponding to I_L( a, ) . 

4, We shall now give the proof of our method of solving the spectrum problem, Let 

us show that, for sufficiently small E , series (2.1) converge. If we introduce into (1.5) 

the following operator 

then (1.5) will become 
B+-vA2 

cp + Kq + eK,cP = uKa(P (4.11 

KG+B-rsiny-?-(A+l), K1 - sin otK, Kz E - B-IA 

Operators K, K1 and Kz operating in H,’ were initially defined on smooth func- 

tions and then extended by virtue of continuity, over the whole space Hz’ . 
If, for example, Fourier series in x , E/ , 6 are used to invert the operator B. then 

we can easily confirm that the operators K, K1 and f?Z’n are fully continuous in H2’. 
When C = 0 , the eigenvalue CJ, and the eigenfunction Cpo (X , g) are known p] 

and Do is a simple eigenvalue. Let us normalize the eigenfunctions of (4.1) by means 
of the condition (cp, zrJH,, = 1. We shafl seek the unknowns in the form 

cp (z, Y, t) = %I (z, Y) + u (2, Y1 I)7 o=o,+p 

Then, the unknowns U (X , p, ti ) and CL should satisfy the equation 

~u~u+Ku-~~K~u=~K~u+~K~(P~-~K,u--K~(P~ (4.2) 

and condition 
(u, T&,, = 0. 

should hold for U (x , y , t ) , 
In the following steps of the proof we make use of the equation of branching [37. 
Equation (4.2) has a solution if and only if the condition of orthogonality 

(4.3) 
is fulfilled, 

bK2u + PK,T, - E&U - EK 1qpot TO)~~, = 0 

Let us introduce the operator J? (fin’ *Hz’) such, that aB?f= ,f if (f, To) = 0 , 
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Then, from (4.2) we have 

1~ - pRK,u + ERK I~ - @K ?‘po - eRK I~o (4.4) 

Applying now to (4.4) the contraction and reflection transformations, we conclude, 
that with C and l-l sufficiently small to satisfy 

It PRK~ - &R lc, ;(I12, < 1 (4.5) 

there exists a unique solution U(X) 2~. t ) of Equation (4.4) 

u (2, ?/t I) = (1 - tlh'Kz + ~RKl)-'(~RKzq+, - ERK&,) (4.6) 

From the latter we see that U (X , .$J , t ) can be expanded into series in powers of 
E and p. Inserting (4.6) into (4.3) we obtain F( p , C ) = 0 where F is an analytic 
function and 

Putting (4.6) into (4.3) we find that /-l( C ) can be expressed in terms of a series in E: . 

It can easily be checked that if l-l ( C ) in its expanded form is substituted into (4,6), 
then the function U (X , p , ti ) will satisfy (4, 4) . 

In conclusion we note that the method of investigation of stability of periodic solutir 
given in Section 2 allows an additional conclusion to be drawn on the influence of small 

periodic forces on the stability of the steady state solution, Thus, if 0, = 0 and 

Re CJn > 0 , then the solution moves from the neutral, into the unstable region, 

The author thanks I. V. Simonenko and V. I. Iudovich for posing the problem and their 

uninterrupted interest in this work, 
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